• 省级人才
    当前位置: 首页 >> 师资队伍 >> 杰出人才 >> 省级人才 >> 正文

    省级人才

    骆欢

    发布人: 时间:2021-03-23 点击量 :

    个人简介

    性别:男                                                                                       籍贯:河南信阳

    职称:副教授、博导                                                                   Email:luohuan@ctgu.edu.cn

    教育背景

    2017/092020/12Texas A&M UniversityCollege Station,土木工程,博士

    2014/092017/07,中国地震局工程力学研究所,结构工程,硕士

    2010/092014/07,黄河科技学院,土木工程,学士

    工作履历

    2022/01至今,三峡大学,土木与建筑学院,副教授

    2021/012021/12,三峡大学,土木与建筑学院,校聘副教授

    主要研究方向

    [1]     钢筋混凝土结构非线性地震分析

    [2]     数据驱动计算

    [3]     人工智能和机器学习

    [4]     风险量化

    [5]     优化计算

    学术兼职

    [1]    美国土木工程师协会(ASCE)结构工程专业委员会委员

    学术成果

    代表性学术论文:

    [1]    Luo, H., & Paal, S. G. (2023). A novel outlier-insensitive local support vector machine for robust data-driven forecasting in engineering. Engineering with Computers, Springer, 1-19.

    [2]    Luo, H., & Paal, S. G. (2023). A datafree, support vector machinebased physicsdriven estimator for dynamic response computation. ComputerAided Civil and Infrastructure Engineering, Wiley,38(1), 26-48.

    [3]    Luo, H., & Paal, S. G. (2022). Data-driven seismic response prediction of structural components. Earthquake Spectra, 38(2), 1382-1416.

    [4]    Luo, H., & Paal, S. G. (2022). Artificial intelligence-enhanced seismic response prediction of reinforced concrete frames. Advanced Engineering Informatics, 52, 101568.

    [5]    Luo, H., & Paal, S. G. (2021). Reducing the effect of sample bias for small data sets with doubleweighted support vector transfer regression. ComputerAided Civil and Infrastructure Engineering, Wiley, 36(3), 248-263.

    [6]    Luo, H.,& Paal, S. G. (2021). Advancing post-earthquake structural evaluations via sequential regression-based predictive mean matching for enhanced forecasting in the context of missing data. Advanced Engineering Informatics, Elsevier, 47, 101202.

    [7]    Luo, H., & Paal, S. G. (2021). Metaheuristic least squares support vector machine-based lateral strength modelling of reinforced concrete columns subjected to earthquake loads. Structures, Elsevier,33, 748-758.

    [8]    Luo, H., & Paal, S. G. (2019). A locally weighted machine learning model for generalized prediction of drift capacity in seismic vulnerability assessments. ComputerAided Civil and Infrastructure Engineering, Wiley, 34(11), 935-950.

    [9]    Luo, H., & Paal, S. G. (2018). Machine learning–based backbone curve model of reinforced concrete columns subjected to cyclic loading reversals. Journal of Computing in Civil Engineering,ASCE, 32(5), 04018042.

    [10] 骆欢,杜轲,孙景江,丁宝荣. (2018).小跨高比钢筋混凝土连梁非线性剪切滞回和分析模型研究[J]. 工程力学, 35(9): 161-169,179.

    [11] 骆欢,杜轲,孙景江,丁宝荣. (2017). 联肢剪力墙非线性分析模型研究及数值模拟验证[J]. 工程力学,34(4):140-149+159.

    [12] 骆欢,杜轲,孙景江,许卫晓,丁宝荣. (2017). 地震作用下钢筋混凝土框架结构倒塌全过程振动台试验研究[J]. 建筑结构学报, 38(12):49-56.