个人简介
性别:男 籍贯:湖北 应城
职称:副教授、博导 Email: hujl@ctgu.edu.cn
教育背景
2014/10-2015/10,日本国立德岛大学,工学部,联合培养博士
2012/09-2016/10,大连理工大学,土木工程学院,博士
2009/09-2012/03,沈阳大学,土木工程与建筑学院,硕士
2005/09-2009/06,武昌工学院,土木工程学院,学士
工作履历
2019/12 – 至 今,三峡大学,土木与建筑学院,副教授
2019/04 – 2019/09,武汉工程大学,土木工程与建筑学院,特聘副教授
2016/11 – 2019/03,华中科技大学,土木工程与力学学院,博士后
开设课程
本科:《建筑结构抗震与抗风》、《砌体结构》
主要研究方向
[1] 地震液化灾害风险分析与控制
[2] 地下工程地震破坏机理分析及防御
[3] 机器学习在岩土与结构工程中的应用
主持科研项目
[1] 国家自然科学基金(青年基金项目),41702303,2018/01-2020/12
[2] 湖北省教育厅科学技术研究计划重点项目,D20211204,2021/01-2022/12
[3] 湖北省自然资源厅科技项目,2023/09-2025/08
[4] 三峡大学,高层次拔尖人才培育计划项目,2019/12-2022/12
[5] 三峡库区地质灾害教育部重点实验室开放基金,2022/10-2024/10
[6] 高分子材料湖北省重点实验室开放基金,2023/01-2024/12
学术兼职
[1] 《Deep Underground Science and Engineering》青年编委 网址:https://onlinelibrary.wiley.com/journal/27701328
[2] 《Earthquake Research Advances》青年编委 网址:https://www.sciencedirect.com/journal/earthquake-research-advances
[3] 中国土木工程学会土力学及岩土工程分会青年工作委员通讯委员
奖励与荣誉
[1] 宜昌市第十四届自然科学优秀学术论文三等奖
[2] 宜昌市第十五届自然科学优秀学术论文二等奖
[3] 2023年三峡大学优秀硕士研究生毕业论文指导教师
[4] 2年内指导研究生获国奖奖学金3人次
[5] 土木与建筑学院第二届“课程思政”暨第七届青年教师教学竞赛三等奖
[6] 第十一届湖北省土木工程专业大学生科技创新比赛指导三等奖
[7] 湖北省省级人才称号
学术成果
发表学术论文50余篇(其中SCI论文27篇),代表性论文如下:
[1] Jilei Hu. Empirical relationships between earthquake magnitude and maximum distance based on the extended global liquefaction-induced damage cases [J]. Acta Geotechnica. 2023, 18: 2081-2095. [SCI收录]
[2] Jilei Hu. Integration of double-weighted Bayesian and simplified methods for predicting seismic liquefaction based on multiple databases [J]. International Journal of Geomechanics, ASCE. 2023, 23(12): 04023214. [SCI收录]
[3] Jilei Hu, Jing Wang. A data extension framework of seismic-induced gravelly soil liquefaction based on semi-supervised methods [J]. Advanced Engineering Informatics. 2024, 59: 102295. [SCI收录、一区]
[4] Jilei Hu, Jing Wang. Influence of data quality on the performance of supervised classification models for predicting gravelly soil liquefaction[J]. Engineering Geology. 2023, 324: 107254. [SCI收录、一区]
[5] Jilei Hu, Bin Xiong, Zheng Zhang, Jing Wang. A continuous Bayesian network regression model for estimating seismic liquefaction-induced settlement of the free-field ground [J]. Earthquake Engineering & Structural Dynamics. 2023, 52(11): 3216-3237. [SCI收录]
[6] Jilei Hu, Luou Pang. Identifying the optimal intensity measure and key factors of earthquake liquefaction-induced uplift of underground structures [J]. Bulletin of Engineering Geology and the Environment, 2023, 82(1): 31. [SCI收录]
[7] Jilei Hu, Jing Wang, Zheng Zhang, Huabei Liu. Continuous-discrete hybrid Bayesian network models for predicting earthquake-induced liquefaction based on the Vs database [J]. Computers and Geosciences. 2022, 169: 105231. [SCI收录]
[8] Jilei Hu. Data cleaning and feature selection for gravelly soil liquefaction [J]. Soil Dynamics and Earthquake Engineering. 2021, 145: 106711. [SCI收录]
[9] Jilei Hu. A new approach for constructing two Bayesian network models for predicting the liquefaction of gravelly soil. Computers and Geotechnics. 2021, 137: 104304. [SCI收录、一区]
[10]Jilei Hu, Wenjun Zou, Jing Wang, Luou Pang. Minimum training sample size requirements for achieving high prediction accuracy with the BN model: A case study regarding seismic liquefaction. Expert Systems with Applications. 2021, 185: 115702. [SCI收录、一区]
[11]Jilei Hu, Huabei Liu. Bayesian network models for probabilistic evaluation of earthquake-induced liquefaction based on CPT and Vs databases [J]. Engineering Geology. 2019, 254: 76-88. [SCI收录、一区]
[12]Jilei Hu, Huabei Liu. Identification of ground motion intensity measures and its application for predicting soil liquefaction potential based on Bayesian network method [J]. Engineering Geology. 2019, 248(8): 34-49. [SCI收录、一区]
[13]Jilei Hu, Qihua Chen, Huabei Liu. Relationship between earthquake-induced uplift of rectangular underground structures and the excess pore water pressure ratio in saturated sandy soils [J]. Tunnelling and Underground Space Technology. 2018, 79: 35-51. [SCI收录、一区]
[14]Nima Pirhadi, Xusheng Wan, Jianguo Lu, Yu Fang, Idriss Jairi, Jilei Hu*. DPT-based seismic liquefaction triggering assessment in gravelly soils based on expanded case history dataset [J]. Engineering Geology. 2022, 311: 106894. [SCI收录、一区]
[15]Xiwen Zhang, Zhen Zhang, Wenhao Sun, Jilei Hu*, Liangliang Zhang, Weidong Zhu. The mechanical deformation characteristics of the internal structure of large diameter shield tunnel in different construction stages [J]. Engineering, Construction and Architectural Management, 2023, Online. [SCI收录]
[16]Nima Pirhadi, Jilei Hu*, Yu Fang, Idriss Jairi, Xusheng Wan, Jianguo Lu. Seismic gravelly soil liquefaction assessment based on dynamic penetration test using expanded case history dataset [J]. Bulletin of Engineering Geology and the Environment. 2021, 80(10): 8159-8170. [SCI收录]
[17]Xiaowei Tang, Xu Bai, Jilei Hu*, Jiangnan Qiu. Assessment of liquefaction-induced hazards using Bayesian network based on SPT data [J]. Natural Hazards and Earth System Sciences. 2018, 18: 1451-1468. [SCI收录]
[18]Jilei Hu, Xiaowei Tang, Jiangnan Qiu. Analysis of the influences of sampling bias and class imbalance on performances of Probabilistic liquefaction models [J]. International Journal of Geomechanics, ASCE. 2017, 04016134. [SCI收录]
[19]Jilei Hu, Xiaowei Tang, Jiangnan Qiu. Assessment of Seismic liquefaction potential based on Bayesian network constructed from domain knowledge and history data [J]. Soil Dynamics and Earthquake Engineering. 2016, 89: 49-60. [SCI收录]
[20]Jilei Hu, Xiaowei Tang, Jiangnan Qiu. A Bayesian network approach for predicting seismic liquefaction based on interpretive structural modeling [J]. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards. 2015, 9(3): 200-217. [SCI收录]
[21]唐小微, 白旭, 胡记磊*. 基于贝叶斯网络的自由场地震液化沉降评估[J]. 振动与冲击, 2018, 37(18): 177-182. [EI收录]
[22]胡记磊, 唐小微, 裘江南. 基于贝叶斯网络的地震液化概率预测分析[J]. 岩土力学, 2016, 37(6): 1745-1752. [EI收录]
专著和教材:
[1] 胡记磊. 地震液化灾害风险的贝叶斯网络评估技术, 中国建筑工业出版社, 2022.
[2] 胡记磊, 唐小微, Pirhadi Nima, 白旭, Ahmad Mahmood. 机器学习方法在地震液化风险分析中的应用. 中国水利水电出版社, 2024.
培养研究生情况
[1] 指导在读博士研究生3名(含合作指导1名)、硕士研究生8名
[2] 培养已毕业硕士研究生6名(含合作指导1名)
欢迎热爱科研且能吃苦的岩土工程与结构工程专业同学前来课题组攻读硕士、博士研究生